
Journal of Computational Physics 229 (2010) 3454–3473
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Parallel adaptation of general three-dimensional hybrid meshes

Christos Kavouklis *, Yannis Kallinderis
Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, WRW 303AA, 1 University Station
Stop C0600, Austin, TX 78712-1085, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 3 June 2008
Received in revised form 11 November 2009
Accepted 9 January 2010
Available online 20 January 2010

Keywords:
Parallel computing
Hybrid meshes
Mesh adaptation
Load balancing
Data structures
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.01.011

* Corresponding author. Tel.: +1 650 320 8456.
E-mail addresses: christos.kavouklis@gmail.com
A new parallel dynamic mesh adaptation and load balancing algorithm for general hybrid
grids has been developed. The meshes considered in this work are composed of four kinds
of elements; tetrahedra, prisms, hexahedra and pyramids, which poses a challenge to par-
allel mesh adaptation. Additional complexity imposed by the presence of multiple types of
elements affects especially data migration, updates of local data structures and interparti-
tion data structures. Efficient partition of hybrid meshes has been accomplished by trans-
forming them to suitable graphs and using serial graph partitioning algorithms.
Communication among processors is based on the faces of the interpartition boundary
and the termination detection algorithm of Dijkstra is employed to ensure proper flagging
of edges for refinement. An inexpensive dynamic load balancing strategy is introduced to
redistribute work load among processors after adaptation. In particular, only the initial
coarse mesh, with proper weighting, is balanced which yields savings in computation time
and relatively simple implementation of mesh quality preservation rules, while facilitating
coarsening of refined elements. Special algorithms are employed for (i) data migration and
dynamic updates of the local data structures, (ii) determination of the resulting interparti-
tion boundary and (iii) identification of the communication pattern of processors. Several
representative applications are included to evaluate the method.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The Navier–Stokes equations are a standard mathematical representation of viscous flow. Their numerical solution in
three-dimensions remains a computationally intensive and challenging task, despite recent advances in computer speed
and memory. A widely used strategy to increase accuracy of a Navier–Stokes simulation, while maintaining computing re-
sources to a minimum, is local adaptation of the associated computational grid. Grid adaptation is a twofold technique
involving local refinement of the mesh in regions of large solution gradients and coarsening in regions of insignificant solu-
tion variation. With the advent of distributed memory architectures and the development of parallel CFD solvers a natural
need for parallel adaptation arose. Moreover, adapting the global mesh in a single computer node not only hinders efficiency
of the parallel solver but is also impractical for large meshes due to memory limitations, hence the need for parallel adap-
tation within a distributed memory framework. Another reason for parallelizing the adaptation algorithm is the drop in per-
formance of the overall simulation due to a serial adaptation module. Indeed, as is mentioned in [1], if 10% of the overall
simulation code is devoted to serial mesh adaptation and the rest to the parallel solver, then the maximum speed-up we
can expect is only 10, regardless of the number of processors we are employing. This fact is easily derived from Amdahl’s
law:
. All rights reserved.

(C. Kavouklis), kallind@veltisto.net (Y. Kallinderis).

http://dx.doi.org/10.1016/j.jcp.2010.01.011
mailto:christos.kavouklis@gmail.com
mailto:kallind@veltisto.net
http://www.sciencedirect.com/science/journal/00219991
http://www.elsevier.com/locate/jcp

3456 C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473
traversal of the octree [14,15]. This method preserves locality, that is, elements within a partition are spatially adjacent, how-
ever it does not offer any control on the size of the interpartition boundary.

The RCM (Reverse Cuthill McKee) algorithm [16] may also be utilized for mesh partitioning. The algorithm renumbers the
vertices of the graph associated with the hybrid mesh [4] so that the bandwidth of its adjacency matrix is reduced. By break-
ing the new ordered list of elements in p segments, a partitioning of the mesh with p partitions that are contiguous is
obtained.

Another partitioning method, based on the space filling curve (Hilbert curve), was investigated in [17] for the case of a
uniform mesh in a square and in [18,19] for octrees of unstructured meshes. The space filling curve passes through the cen-
troids of all mesh elements (or leaf octants), hence dividing it into segments yields a partitioning of the mesh. A property of
the Hilbert curve is that any pair of consecutive elements (or leaf octants) in the associated ordered list are face neighbours,
which results in contiguous partitions. The method is very fast. However, it lacks control of the interboundary size.

For all of the aforementioned approaches, given two neighbour partitions, the Kernighan–Lin algorithm [20] may be used
to further decrease the length of the interprocessor boundary by mutual exchange of graph vertices. Similarly, in [13–15]
local exchange of elements is employed to eliminate protruding interpartition boundaries and further reduce their length
and hence the communication cost.

In the present work, the schemes of [8–10] are employed for general hybrid mesh partitioning, since they provide a min-
imal interpartition boundary size at an execution time comparable to the fast geometry-based partitioning methods.

1.2. Dynamic load balancing on 3D meshes

Local refinement or coarsening of the mesh produces an imbalance of load shared by processors. As a result, the mesh
must be equidistributed among processors so that performance of the numerical solver does not deteriorate.

The simplest dynamic load balancing approach is based on merging of local meshes and having a master processor rep-
artitioning the global mesh [21–23]. However, overloading one processor with partitioning may result in deterioration of
performance. Another deficiency of this strategy is that new partitions may be significantly different from the previous ones
and large data sets may need to be migrated, depending on the partitioning method.

In [24] the octree partitioning technique of [13] is used to dynamically balance an adapted hybrid mesh. Specifically, each
processor holds a copy of the initial global octree corresponding to the coarse mesh. After refinement, the weights of the leaf
octants are adjusted based on the number of elements they contain and then each processor partitions the weighted octree
as in [13] using recursive coordinate bisection. The method is incremental, that is new and old partitions do not vary appre-
ciably and hence data migration is not costly. However, for large meshes and a large number of processors this method re-
sults in some loss of performance, since it has a constant speed-up of 1 [14].

The octree partitioning scheme of [14,15], described in the previous subsection, may also be used for dynamic load bal-
ancing. In [15,18] each processor stores a portion of the octree and during the load balancing phase, a local depth first tra-
versal is employed to assign sub-octrees to partitions.

In [14,25] a parallel inertial recursive bisection algorithm is introduced. Since IRB requires the computation of the median
value of a set of doubles (either the x or y or z inertial coordinates) its parallel version can be reduced to efficient parallel
sorting. The method will in general give very different partitions from the original ones, due to the sensitivity of inertia axes
to mesh alteration (see, for instance, [15] for a relative example), and will hence induce a high data migration cost. However,
it yields better quality partitions compared to the octree dynamic load balancing of [15,18].

Authors of [14,25] also refer to a dynamic load balancing strategy based on iterative tree balancing. In this context, each
processor requests load from its neighbour with the highest load difference and the communication graph of processors is
separated into a forest of trees. Then, the trees are balanced and the procedure is repeated until load is equidistributed. The
method is non-deterministic and at each iteration data has to be migrated. Further, it gives lower quality partitions com-
pared to the octree load balancing approach of [15,18] and parallel IRB.

A divide and conquer load balancing method is presented in [11]. The processors initially form two groups and the group
with the highest load migrates elements to the other one. The transfer of elements involves only processors that are face
neighbours. The procedure is then recursively applied to each one of the equally loaded processor groups. The algorithm
is deterministic and converges in logðpÞ steps, where p is the number of processors and it is a power of 2. However, it lacks
control of the interpartition boundary size and data must be migrated at each step.

In [26–28] the load balancing strategy that refinement trees of coarse elements (i.e., elements resulting from multiple
refinement of initial mesh elements) reside on the same processor is employed. This requirement, which has been adopted
in the present work for general hybrid meshes, results in straightforward application of mesh quality preservation rules and
facilitates mesh coarsening. In [26,27] grid load balancing is based on repartitioning the weighted dual graph associated with
the grid using the Parmetis library [29,30]. The authors note that assigning new partition i to processor i is not necessarily the
best strategy to reduce data transfer. Instead, a special algorithm is employed to optimally assign partitions to processors, so
that the data migration cost is minimized.

In the present work, the Zoltan library [19] has been utilized for dynamic load balancing, using the Parmetis graph rep-
artitioning algorithms [31]. Parmetis provides fast partitioning time and partitions of superior quality combined with a re-
duced data migration cost, due to optimal distribution of partitions to processors. A survey of dynamic load balancing
approaches can be found in [32].

C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473 3457
1.3. Parallel data structures

The data structures pertaining to the interpartition boundary among processors are a crucial feature of any parallel adap-
tation algorithm, since communication of tagged edges for refinement is based on them. Furthermore, special care needs to
be taken for the data structures that support dynamic load balancing.

In [13,24,27] dynamic lists of interpartition edges and nodes are used, while in [33] an additional list of interpartition
faces is maintained. Similarly, in references [14,25,34] the interpartition boundary data structure consists of faces, edges
and nodes. Interpartition entities shared by any two processors form doubly linked lists for easy insertions and deletions.
To facilitate communication, each shared mesh entity stores the ids of processors that share it, as well as the local ids of
its copies in these processors. Additionally, in [13,24], the octree associated with the coarse hybrid mesh is stored in each
processor and is used for dynamic load balancing, as mentioned in the previous subsection.

In [14,15,25] a distributed octree is employed for dynamic load balancing. Each octant that is not present in the local pro-
cessor is replaced by a structure that contains its owner processor and address. Similarly, non-present parents of octants are
replaced by auxiliary structures that contain their owner processors and remote locations. In general, implementing a dis-
tributed octree, as opposed to [24], is a complex task, however its use is imperative for very large meshes.

In [35] mesh nodes are partitioned across processors. Lists of shared edges are utilized for communicating refinement
marks. The authors do not use the usual tree data structure to handle refinement/derefinement of elements, instead they
are storing them in a hash table. An additional table of element edges is constructed and, by means of it, children of a given
element can be accessed.

In [21] a tree data structure of interpartition faces is employed for the case of all tetrahedra meshes. Processors commu-
nicate only triangular faces of the interpartition boundary and binary patterns corresponding to their marked edges. A con-
sistent ordering of nodes of interpartition faces is essential for this method. It is also required in the parallel refinement
scheme of [36] to ensure compatible refinement patterns of interpartition faces.

In the present work, a new simple parallel data structure has been designed. The only interpartition boundary entities
required for parallel communication are the interprocessor faces. No additional data structure is required to accommodate
them, since they are stored in the hash table of boundary faces. Moreover, a special ordering of their nodes is not needed. A
small hash table that transforms global ids of nodes to local ids is also defined for parallel communication. It is dynamic,
hence more appropriate for parallel adaptation, compared to the conventional static translation tables. Finally, the weighted
dual graph corresponding to the adapted hybrid mesh is stored in each processor using the CSR format [37] and is utilized for
dynamic load balancing.

1.4. Parallel refinement and coarsening

In a parallel refinement/coarsening procedure, each processor typically refines/coarsens its portion of the mesh. Commu-
nication is necessary to adjust interpartition boundary entities and ensure consistency of local meshes.

In reference [35], as well as in the present work, refinement is based on exchange of edge refinement flags. Element
refinement involves division of the oldest edge or of the longest one, in case of a tie.

In [38–40] local meshes are first refined excluding elements close to the interpartition boundary. Subsequently, after an
element migration step, the interpartition boundaries are shifted. Finally, the remaining elements adjacent to old interpar-
tition boundaries are refined. Despite employment of this cell migration step a significant merit of the method is the absence
of communication for altering the interpartition boundary.

A synchronous parallel tetrahedral grid adaptation scheme is presented in [41]. The associated serial algorithm is similar
to the work in [42], that is, first tetrahedra flagged for refinement are isotropically refined and then hanging nodes are elim-
inated by employing a closure procedure. The parallel version of the algorithm starts with isotropic refinement of marked
local elements. In the sequel, a parallel while loop is executed to obtain a conformal mesh. At each iteration, elements not
belonging to the permitted division types are refined isotropically and, further, edge marks of interpartition boundary edges
are communicated.

In [27] parallel adaptation of tetrahedral grids is based on a synchronous iterative edge marking algorithm. In serial, mesh
edges are flagged for refinement until all elements obtain refinement patterns that result in a conformal mesh, before refine-
ment is invoked. In the parallel extension of the algorithm, processors first flag their local meshes and upon local conver-
gence they communicate interboundary edge refinement marks. The procedure is repeated if any inconsistency is
detected on the interpartition boundaries. Finally, each processor proceeds with refinement of its local mesh.

In [34] children of a refined element may reside on different processors, however they need to be moved in the same pro-
cessor before invoking the coarsening procedure. Parallel refinement presents no complications since hanging nodes are al-
lowed and therefore each processor can refine its elements independently. It should be noted that synchronous approaches
do not offer optimal usage of processors.

In [36] all possible division types of a tetrahedron have been derived (42 in total). As a result, refinement does not prop-
agate to neighbours of refined elements (and hence also to neighbour processors in a parallel setting). This property entails a
fairly simple parallel refinement algorithm that does not require any communication among processors. In particular, pro-
cessors first refine their interpartition faces and then proceed with refining their local meshes, independently, without fur-
ther communication.

3458 C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473
In [36,25,39] coarsening is achieved by edge collapsing. In this case, edges flagged for coarsening are deleted and their
vertices are collapsed, while elements that share them are removed. In [15] coarsening involves deletion of all elements
included within the ball of a node (polyhedron composed of all elements that share the node) and further regriding with
fewer elements. Both approaches require communication to identify all elements that share an interpartition edge or node
before proceeding with coarsening (except from study [39], where such communication is not required as mentioned
before).

In the present work, the hierarchical refinement/coarsening adaptation scheme of [43,46] is parallelized. The parallel
refinement algorithm involves the exchange of interprocessor edges’ refinement tags. It makes use of Dijkstra’s ring algo-
rithm for distributed termination detection [44,45] and is completely asynchronous. Also, it is required that descendants of
a refined element lie on the same processor. As a result, mesh coarsening is automatic and minimal communication is
needed to delete interpartition nodes after derefinement. It is also noted that in references [11,13] only one level of par-
allel refinement is considered, in contrast with the present work, and specifically in [13] the issue of coarsening is not
addressed.

The paper is structured as follows. In Section 2, a few details regarding the serial adapter discussed in [43,46] are agglom-
erated. Issues pertaining to element refinement types, adaptation rules and data structures are briefly presented. In Section 3,
the additional data structures that are needed for parallel communication are discussed. In Section 4, the actual parallel
adaptation algorithm is presented. Flow feature detection in parallel is discussed and the application of Dijkstra’s algorithm
to the communication of interpartition edges’ refinement marks is shown. Section 5 deals with a load balancing approach
based on the Zoltan library [19]. The algorithms related to data migration and local data structures’ alteration after mesh
repartitioning are also given. In Section 6, an algorithm for the determination of the interpartition boundary after load bal-
ancing is described along with a simple procedure that determines the face neighbours of a processor. The paper concludes
with Section 7, where several applications are presented. In particular, global refinement of a cylinder mesh, emulation of a
shock wave in a channel and subsonic flow about a NACA 0012 wing are considered.
2. The serial mesh adaptation method

Serial refinement and coarsening of general hybrid meshes has been the focus of recent previous work [43,46]. In this
section the main aspects of this work are briefly described. The computational algorithm involves the flagging of edges
for refinement or coarsening according to some error estimator. Then, the mesh is first coarsened and the refinement pro-
cedure is invoked. The latter involves continuous application of the element flagging rules (in a while loop) until no further
edges are marked for refinement. Finally, the mesh is refined, the solution is interpolated to the newly created nodes and it is
passed to the solver module for the next simulation cycle. The most intensive part of the algorithm, in terms of CPU time, is
the while loop of the application of the element flagging rules.
2.1. Element division types

Division types for tetrahedra, prisms, hexahedra and pyramids have been defined and implemented using special
templates. For tetrahedra the usual 1:2, 1:4 and 1:8 divisions are employed, augmented with refinement types compat-
ible to those of pyramids, while directional refinement of prisms and hexahedra is utilized to preserve the structured
nature of the mesh along the boundary layer regions. For pyramids both isotropic and anisotropic refinements are per-
mitted to complement the division types of the rest types of elements. Division types are compatible with each other in
order to avoid the presence of hanging nodes in the adapted mesh. Representative element division types are depicted in
Fig. 2.

For each division type, given the resulting children, the parent element can be reconstructed when coarsening the grid. In
particular, children elements and their vertices are carefully numbered, in order for the coarsening algorithm to identify the
vertices of parent elements and re-create them [43,46].
2.2. Element flagging rules

Certain rules are applied to obtain a valid mesh without hanging nodes after adaptation and to retain its quality. At first,
the faces of elements are visited and their edges are appropriately flagged for refinement. Specifically, if two edges of a tri-
angular face are flagged for refinement, then the third edge is also flagged, and, if all edges of a quadrilateral face are flagged
for refinement, then its centroid is introduced.

To preserve quality of the initial mesh, special rules are enforced. In particular, it is required that the maximum adapta-
tion level difference of elements sharing a node is no more than one. This may be required by node based finite volume solv-
ers to ensure that the centroid of node dual volumes is closed to their associated nodes. In addition, no children of an
anisotropically refined element may be further refined. Instead, the parent element is reinstated and further isotropically
refined (isotropic division rule). The associated algorithm makes use of the coarsening scheme discussed in [43,46]. This rule
is essential for avoiding skewed elements which in turn affect the quality of node dual volumes.

Fig. 2. Representative division types of tetrahedra, prisms, hexahedra and pyramids [43,46]. It is emphasized that refinement of tetrahedra, hexahedra and
pyramids may result in children of mixed type.

C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473 3459
2.3. Serial data structures

The fundamental entities for representing a hybrid mesh are the nodes which correspond to its vertices. The other entities
namely tetrahedra, prisms, hexahedra, pyramids, edges and boundary faces are defined by pointers to their vertices. Another
entity, the center, is defined to account for the centroids of refined quadrilateral faces.

The data structures of the serial adapter are dynamic in nature and allow for multiple levels of refinement/coarsening. To
store mesh elements and nodes linked lists are used and edges, boundary faces and centers are stored in hash tables. The adja-
cencies of mesh entities are depicted in Fig. 3. It is noted that parent elements are not stored in the data structure, rather
special auxiliary entities that contain the mesh hierarchical information are stored in the element lists. In particular, given
a set of sibling elements and the associated auxiliary entity, the coarsening algorithm of [43,46] can reinstate the corre-
sponding parent element in the data structure.
3. Parallel data structures

This section addresses the additional data structures that are defined for the parallel adapter. A dual graph [4] that rep-
resents a hybrid mesh is considered. Its vertices are the mesh elements and its edges are the pairs of face adjacent mesh
Center

Element

Edge

Node

Boundary face
Hexahedra and pyramids

Hash table lookup
Direct link

Fig. 3. Relationships among mesh entities. Dotted lines indicate access by table lookup and solid lines indicate direct links.

3460 C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473
elements. The dual graph is required for both initial partitioning of the mesh and load balancing of the resulting adapted
meshes. By partitioning it, partitions of the associated hybrid mesh are readily obtained. In the present work the Metis
[8] and Chaco [47] graph partitioners have been employed. Interpartition boundary data are managed via table lookup
and an additional hash table for transforming global ids of interpartition nodes to local ids is defined.

3.1. Data structure for the dual graph

The dual graph is implemented using the CSR (compressed storage) format. This is composed of four arrays and is not
expensive in terms of memory. It is noted that each processor holds the whole dual graph of the original mesh in CSR format
and not only that of its own partition.

An important consideration is to enforce the rule that siblings resulting from the refinement of an element are present
within the same processor. This is necessary for the adaptation algorithm when applying the isotropic refinement rule or
when coarsening a group of sibling elements. If this condition is not satisfied, expensive and complicated data migration
is required. An implication of this rule is that after several adaptations the whole refinement tree (i.e., all descendants) of
a coarse mesh element resides on the same processor. Additionally, when the mesh is load balanced, only coarse mesh ele-
ments and refinement trees may be migrated. Similar ideas concerning the use of the dual graph have been employed before
[21,22,26,27]. However, the present work is one of the first to apply them for general hybrid meshes.

3.2. Data structure for the interpartition boundary

Exchange of information between neighbour processors is based on their common interpartition boundary edges. In con-
trast with other approaches that utilize lists or static arrays of interpartition edges, faces and nodes, a new simple data struc-
ture for interpartition boundary entities is proposed. In particular, only faces of the interpartition boundary are employed
and interpartition edges are accessed through them by table lookup. The interpartition faces in a given processor are stored
in the hash table of boundary faces and are treated as boundary faces by the refinement and coarsening routines. In addition,
they are updated dynamically during adaptation.

3.3. Global to local id transform

Most parallel solvers use special local numbering of the elements involved in the numerical stencil to take advantage of
Cache memory. The adapter may work with only global numbers of nodes, but for compatibility with the solver and effi-
ciency of the adapter’s hash functions, local numbering of nodes is also introduced. Hence the adaptation module is acting
on local numbers of nodes. For communication among processors global ids of nodes are utilized, however an issue arises
when a processor receives the global id of an interpartition node from a neighbouring processor. Then the copy of the node
in the local data structure of the receiver processor cannot be identified. To resolve this problem, a small hash table that con-
verts global ids of interpartition nodes to their corresponding local ids is defined. With this new approach the usual constant
size translation tables are avoided.

4. Parallel mesh adaptation

This section is concerned with the parallel adaptation algorithm. Special care needs to be taken for identifying edges to be
refined or coarsened and for communicating refinement flags of interpartition boundary edges. The first phase of the algo-
rithm guarantees that mesh edges are properly flagged for refinement so that no hanging nodes appear after adaptation. The
main issues here are the communication among processors of the refinement flags of edges lying on their interpartition
boundary and the detection of termination of the edge flagging procedure for all processors. To ensure that all processors
have stopped flagging their edges and hence it is safe to proceed with refinement, Dijkstra’s algorithm for distributed ter-
mination detection [44,45] is employed. On the second phase, each processor is independently refining its portion of the
mesh.

4.1. Parallel flow feature detection

Flow feature detection is based on undivided and divided differences of flow quantities along mesh edges, as has been
demonstrated in [48,49]. In particular, if / is a flow quantity of interest, then the mean values and standard deviations of
undivided and divided differences of / (l1;r1 and l2;r2, respectively) are computed. Then, edges with divided and undi-
vided differences above the threshold values l1 þ ar1 and l2 þ ar2 are refined. Here, a is the adaptation threshold coeffi-
cient, which is an empirical parameter. Similarly, edges with divided and undivided differences below the threshold values
l1 � br1 and l2 � br2 are flagged for coarsening, where b is another empirical parameter.

The computation of these statistical quantities in parallel is more involved because of interpartition edges that are shared
by multiple processors and the necessary communication required. Here, a new parallel feature detection algorithm based
on the aforementioned works is presented. To facilitate the analysis, the existence of a master processor that collects

C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473 3461
information about edges and coordinates the computation, is assumed. The procedure is composed of the following four
steps:

(a) Each processor identifies and counts its interior and interpartition boundary edges. Then, the sums of differences of /
along interior edges are computed. A message that contains these sums and the interpartition edges is sent to the mas-
ter processor.

(b) The master processor uses table lookup to compute the sums of differences along interpartition edges. It then scatters
the mean values to all slave processors.

(c) The slave processors compute sums of the form
P
ðDi/� lÞ2 over their interior edges and send them to the master

processor. Here, Di/ is a difference of / along edge i.
(d) Finally, the master computes similar sums over the interpartition edges and the standard deviations r1;r2 are

evaluated.

Given the mean values and standard deviations of quantity /, the slave processors identify edges that must be refined or
coarsened and start the adaptation process. It is emphasized that this is the only place in the present parallel adaptive meth-
od where a master processor is utilized.
4.2. The need for global termination detection

An important aspect of the proposed parallel mesh adaptation algorithm is communication among processors while
local edges are being flagged for refinement. As was seen in Section 2, each processor is executing a while loop, that
involves application of flagging rules for edges, to obtain a local conformal mesh, in other words a mesh without hang-
ing nodes. Processors must communicate the refinement marks of their interpartition edges to ensure the absence of
possible hanging nodes on the interpartition boundary. If at least one interpartition edge of processor: Pi becomes
flagged by a neighbour processor Pj then the edge flagging iteration must be repeated for Pi. Even if a processor has
completed flagging its edges it is not safe to proceed with refinement of its elements due to non-delivered messages
from its neighbours that may incur hanging nodes on the interpartition boundary. Before invoking the mesh refinement
scheme it is mandatory to ensure that all processors have finished flagging their edges and that no messages are pend-
ing. To detect the global termination of the processor system, Dijkstra’s algorithm for distributed termination detection
is employed.

In the following, a brief description of Dijkstra’s algorithm is presented. Initially, all processors are active. Processors are
executing tasks asynchronously and it is assumed that if a processor is idle it cannot be activated spontaneously, but only
after receiving a reactivation message from another processor. The goal is to detect whether all processors are terminated.
To achieve this state of global termination, two conditions need to be satisfied. First, all processors must be idle, and sec-
ondly, no further messages should be in transit. The latter condition is required since an already terminated processor
can be reactivated by a pending message.

In the following, it is assumed that processors form a closed logical ring P0; P1; . . . ; Pn�1 where n is the number of proces-
sors. In other words, processor Pi follows Pi�1 and precedes Piþ1. Further, processor Pn�1 precedes processor P0. It is also as-
sumed that any processor Pi can communicate a token to its following processor Piþ1. The token is colored white or black.
Moreover, it is augmented with the difference of the total number of sent messages minus the number of received messages,
denoted by Nmsg. In Fig. 4 the two independent types of communication paths within a system of eight processors are de-
picted. As is seen, messages that contain information about the global task are communicated, as well as messages that con-
tain the token. Dijkstra’s algorithm comprises the following set of rules:
Fig. 4. Example of communication routes of Dijkstra’s algorithm for a ring of eight processors. The token is sequentially passed from processor 0–7 and
returns to 0. During circulation of the token, processors communicate messages related to the problem being solved.

3462 C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473
(i) Processor P0 always passes a white token to processor P1 after being terminated.
(ii) When processor Pi receives the token it forwards it to Piþ1 only after becoming inactive.

(iii) If processor Pi has sent an activation message to processor Pj, where j < i, then it passes a black token to Piþ1. If this is
not the case, the token is sent to Piþ1 with its color unchanged. Also, Pi updates the value of Nmsg by adding to it the
difference of the number of messages it has sent minus the number of messages it has received.

(iv) If processor P0 receives a black token or a token with Nmsg – 0 then it resends a white token to P1 with Nmsg equal to
the difference in number of sent/received messages of P0 and the probing cycle is repeated. Otherwise, if the received
token is white, with Nmsg ¼ 0, then the algorithm terminates.

As is seen from step (iv) the status of the system is evaluated by processor P0. A received black token indicates that several
processors may still be active, while a token with Nmsg – 0 means that pending messages are en route. On the contrary, a
received white token with Nmsg ¼ 0 means that global termination has been reached. In this case P0 scatters a message
to all other processors that the algorithm has finished successfully.
4.3. Flagging of edges in parallel

In the sequel, the coupling of Dijkstra’s algorithm with the adaptation algorithm presented in Section 2.4 is discussed. The
desired goal is to have all local meshes properly flagged for refinement so that hanging nodes will not appear neither in their
interior nor on the interpartition boundaries after refinement. A flowchart of the combined algorithm is presented in Fig. 5.
Within the present context, a processor is in active state when it is applying the edge flagging rules for its elements, that is,
Receive token

White token and no
pending messages ?

Rank=0 ?

Forward token Termination detected

Start

EndTermination detected ?

No

Process activated ?

Yes

Converged ?

No

to neighboursApply element flagging rules

Yes

No

Yes

from neighbours

Send interprocess edge flags

Probe for incoming messages

Yes

No

Yes

No

Fig. 5. Main stages of the parallel adaptation algorithm. The algorithm is composed of the serial algorithm augmented with Dijkstra’s algorithm for
distributed termination detection. The while loop for flagging of element edges (– – –) and the token communication and global termination detection (–��–)
are depicted.

C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473 3463
when executing the depicted while loop. For this part of the algorithm no communication with neighbours is involved. After
exiting the loop, a consistently flagged local mesh has been achieved. Then, the processor is communicating the interproces-
sor edges’ refinement marks to its face neighbours and waits for incoming messages from them (if any). The communicated
messages contain triples of the form ðgid0; gid1; f Þwhere gid0 and gid1 are the global ids of an edge’s incident vertices and f its
refinement mark. In case that an otherwise unflagged interpartition edge becomes flagged by an incoming message, the pro-
cessor is reactivated. As is seen, after the exchange of interpartition edges’ marks, a processor receives the token from its
predecessor and forwards it with the appropriate color to its successor. When global termination is detected by processor
0 all processors can safely proceed with refinement of their partitions. It is emphasized that parallel flagging of mesh edges
is an asynchronous computation paradigm. Indeed, during its execution, processors may be in totally different states; either
idle or flagging their elements’ edges, or exchanging their interboundary edge’ flagging marks. A synchronous approach (like
in [27,41], for instance), where all processors complete flagging their edges and exchange edge refinement marks and then
having a master processor to check conformity on interpartition boundaries could have been employed. The procedure is
then repeated until convergence to a global mesh with no hanging nodes. Although easier to implement, this method is ex-
pected to scale worse, compared to the strategy in the present work, since it delays processors that have converged, from
starting a new edge flagging iteration, until all processors have converged.
5. Dynamic load balancing

After adaptation, the mesh is appropriately redistributed among processors, before the new simulation cycle, so that per-
formance of the numerical solution algorithm is not affected by load imbalance. The present load balancing strategy requires
that (i) all sibling elements lie on the same processor as discussed before and (ii) only the original coarse mesh with proper
weights is balanced. Due to this approach, coarsening and application of the isotropic refinement rule are facilitated since
parent elements can be readily reinstated in the local data structures. Additionally, a significant reduction in CPU time for
mesh repartitioning is observed, since the balancer [19] acts on the initial mesh. Furthermore, two complicated issues that
are essential for any adaptive parallel algorithm [32] are addressed; Updating the local data structures during the phases of
data migration and data reception, and determining the new communication pattern.
5.1. Exchange of data and updates of the local data structures

The load balancer identifies the elements that need to be transferred to other processors. Then, the nodes and edges that
may be deleted from the local data structures are determined and boundary faces of elements tagged for migration are re-
moved. In the sequel, processors communicate messages that contain information about the migrated elements. These mes-
sages contain data in the following order: nodes (global ids and coordinates), elements (cell to node connectivities) and
boundary faces (boundary face to node connectivities).

After reception of a message, the global ids of nodes are extracted. A received node may already be present in the local
data structure, if it lies on the interpartition boundary. To avoid creation of multiple copies of nodes, a temporary hash table
T that initially contains the addresses of interpartition boundary nodes is defined. This temporary data structure is also use-
ful in determining the node pointers for elements, boundary faces and edges. Utilizing table T provides a simpler and faster
approach compared to [50] where balanced binary trees are employed for each type of migrated entity.

When an incoming node is extracted a search for it is performed in T. If the node does not exist in T, then a copy of it is
created in the nodes’ linked list and the node is hashed (stored) in T. An example of this technique is illustrated in Fig. 6. On
the top of the figure, all depicted elements of processor 0 are to be migrated to processor 1. In (a), processor 1 hashes (stores)
interpartition nodes A,B and C in hash table T. In (b), the received message of incoming nodes is depicted. As was seen before,
the message contains only global ids of nodes. In step (c) all incoming nodes are hashed (searched for) in T. Nodes A,B and C
are not constructed again but instances of nodes D,E and F are created, placed in the nodes’ data structure and simulta-
neously stored in hash table T.

The second step of the data reception procedure involves the extraction of mesh elements. An incoming element is com-
posed of the set of global ids of its nodes. A search operation in the hash table T yields the node pointers for mesh elements.
Moreover, copies of the new elements are created and placed in the linked list of mesh elements and the edges of new ele-
ments are hashed (stored) in the edges’ hash table. The incoming boundary faces are constructed in an analogous manner.
Finally, edges and nodes that were flagged for deletion are removed from the local data structures.
6. Interpartition boundary updates and related topological issues

After load balancing and data migration, the new interpartition faces must be determined. Furthermore, due to topology
changes after load balancing, the adjacency of processors must be re-evaluated. These two major issues are addressed in this
section. In order to resolve them, a special algorithm that (i) avoids expensive searches to identify the new interpartition
faces and (ii) determines the face neighbours of each processor, is applied. The interpartition boundary identification is
hence composed of two phases for which efficient use of table lookup is employed. The proposed method is faster than

Fig. 6. Update of the local nodes data structure after data reception. Processor 1 extracts nodes from the incoming message. For nodes A, B, C it does not
create any new copies, while it creates copies of nodes D, E, F in its data structure and stores them in the nodes’ hash table.

3464 C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473
the approach presented in [51] where an octree of nodes is utilized to determine interpartition boundaries and the new com-
munication pattern.
6.1. Phase 1: determination of interpartition faces

During the first phase, processors communicate with each one of their neighbours to determine the new interpartition
boundary that results from load balancing. Based only on the elements that are migrated to other processors and those re-
ceived, three kinds of interpartition faces need to be identified; (i) old ones that must be deleted, (ii) old ones that also belong
to the new interpartition boundary and (iii) new ones.

In the following, the algorithm for phase 1 is described, based on Figs. 7–9. An example of two processors 0 and 1 initially
sharing the interpartition boundary AB (Fig. 7) is considered. Adaptation has resulted in load imbalance and elements of the
shaded regions ACD and EFB are to be migrated from processor 1 to 0 and from processor 0 to 1, respectively (Fig. 8). The new
interpartition boundary after load balancing is FE [EC [CD as shown in Fig. 9. For the moment, processor 0 is considered.
The hash table of its boundary and interpartition boundary faces is denoted by Ti. The set of elements contained within re-
gion EFB and the set of the rest of elements are denoted by L1 and L2, respectively. Furthermore, an auxiliary hash table of
faces Ta is defined.

At first, faces of the elements of L1 are hashed (stored) in Ta and searched for in Ti. If a face is present in Ti, then it belongs
to the old interpartition boundary or it is a boundary face of an element that leaves processor 0 and hence it is flagged for
deletion. In the present example, processor 0 identifies faces of EB in this way. Next,the faces of the elements of L2 are hashed
(searched for) in Ta. If such a face does exist in Ta, then it belongs to the new interpartition boundary. With this approach,
faces of EF are identified. In the sequel, processor 0 receives the elements of region ACD from processor 1. All faces of
incoming elements are hashed (stored) in Ta. If a face is hashed twice, then it is an interior face of region ACD, otherwise,
it lies on AC [CD and is marked appropriately in Ta. Additionally, faces of received elements are hashed (searched for) in
Ti. If any such face is present in Ti, then it lies on the old interpartition boundary portion AC and hence it is flagged for
deletion in Ti. Moreover, it is unmarked in Ta. At the end of this procedure, AC has been eliminated and the marked faces
of Ta constitute the new interpartition boundary portion CD. Using the same algorithm, processor 1 derives exactly the
same set of common interpartition faces.
6.2. Phase 2: determination of face neighbour processors (new communication pattern)

On the second phase, an all to all communication is required to determine for each processor its new face neighbours. A
processor receives the whole set of interpartition faces of every other processor and compares it with its own set. For

Fig. 7. Initial partition of processors 0 and 1. The interpartition boundary is AB.

Fig. 8. Mesh elements that are flagged for migration. Elements of region ACD of processor 1 are to be transferred to processor 0. Similarly, elements of
processor 0 within region EFB are flagged for migration to processor 1.

Fig. 9. New partition, after load balancing. The new interpartition boundary is the union of boundaries FE, EC and CD.

C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473 3465
instance, suppose processor k receives the interpartition boundary S of processor l. The faces of S are hashed (searched for) in
the table Ti of processor k. If any faces of S are present in Ti, then k and l are face neighbours and the face adjacency of k is
adjusted.

This second phase is required to resolve the issues presented in Figs. 10 and 11. A typical situation of two processors
becoming face neighbours after load balancing, although initially they are not, is presented in Fig. 10. A more difficult case
is depicted in Fig. 11. As is seen, interior faces of a processor may lie on the interpartition boundary of two other processors

Fig. 10. In this example, processors 0 and 3 are not initially face neighbours (a). Then, processor 1 migrates elements to 0 and processor 2 transfers
elements to processor 3. After load balancing (b), processors 0 and 3 share an interpartition boundary.

Fig. 11. In this example, elements ABD and ABC originally reside in processor 0. Then, element ABD is migrated to processor 1 and element ABC to processor
2. As a result, face AB (initially an interior face of processor 0) becomes an interpartition face of processors 1 and 2.

3466 C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473
after load balancing. The new adjacency of processors cannot be determined during element migration by mutual commu-
nication of face neighbours only. Hence the need for this all to all exchange step for the resolution of these pathological cases.
7. Applications

In this section, the developed parallel adaptation scheme is applied to several representative cases. Both stationary and
transient adaptation examples are considered to test the refinement and coarsening capabilities of the parallel adapter.

7.1. Global refinement of a cylinder hybrid mesh

Two levels of global refinement of a cylinder hybrid mesh are considered. The initial coarse mesh is composed of a total of
456,001 elements and contains only tetrahedra and prisms. Prisms cover the boundary layer region around the cylinder and
tetrahedra fill the rest of the computational domain. The mesh is dense in the rear of the cylinder to capture the wake of a
flow field. In Fig. 12 the two resulting adapted meshes after load balancing are depicted, for a run with 8 processors. As is
Fig. 12. Refined mesh after the first (left) and second (right) adaptation. The symmetry boundary of the computational domain and the corresponding
partitions are depicted. The once refined mesh consists of 2,968,472 elements and the twice refined one of 21,029,632 elements.

C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473 3467
seen, on the second level, the processor that occupies most of the wake region migrates elements to the processor that
encompasses the cylinder. This is due to the high density of tetrahedra within the wake region and the fact that isotropic
refinement of a tetrahedron produces more elements than the directional refinement of a prism. In Fig. 13 the refinement
times for the two adaptations for runs up to 20 processors are presented.
7.2. Refinement and coarsening for a moving shock

The next test cases involve shock movement in a channel. At first, a channel composed of 428,868 tetrahedra is consid-
ered. At each adaptation step n, the shock occupies the region 30þ 1:75ðn� 1Þ 6 x 6 30þ 1:75ðn� 1Þ þ 2 and this region is
refined. As it can be seen, the refinement regions between successive adaptation steps overlap. The region behind the shock,
x 6 30þ 1:75ðn� 1Þ, is coarsened. A total of 10 adaptation steps are employed in a run with 8 processors. In Fig. 14 the inter-
partition boundary of a partition that is adjacent to the shock region is shown. It is observed that the portion of the inter-
partition boundary that touches the shock is composed of faces at levels 0, 1 and 2.

Similarly, the movement of a shock in a channel using a mesh that contains all four types of elements is simulated. The
mesh is composed of 255,536 cells. Prisms and hexahedra cover the bottom and the top of the channel, respectively. The rest
of the domain is tessellated with tetrahedra and pyramids connect the hexahedral/prismatic part of the mesh with the tet-
rahedral one. At each adaptation step n, the shock occupies the region �250þ 20ðn� 1Þ 6 z 6 �250þ 20ðn� 1Þ þ 30 and
this region is refined. The refinement regions between successive adaptation steps partially overlap and the overlapping
4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Number of processors

R
ef

in
em

en
t t

im
e

(s
ec

)

4 6 8 10 12 14 16 18 20
5

10

15

20

25

30

35

40

45
R

ef
in

em
en

t t
im

e
(s

ec
)

Number of processors

Fig. 13. Refinement time versus number of processors for the first (left) and second (right) adaptation.

Fig. 14. Geometry of a partition that touches the moving shock.

3468 C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473
region has length 5. The region behind the shock, z 6 �250þ 20ðn� 1Þ, is coarsened. For this run 8 processors were also
used. In Fig. 15 the shock movement for 10 adaptation steps is delineated along with the corresponding partitions.
7.3. Parallel adaptation for flow around a NACA 0012 wing

The final test case is associated with subsonic turbulent flow around a wall mounted NACA 0012 wing at an angle of at-
tack of 12

�
. The Reynolds number is Re ¼ 2� 106 and the Mach number is Ma ¼ 0:22. The original mesh contains 2,718,046

elements of all four kinds. In particular, prisms and hexahedra cover the wing and tetrahedra the rest of the domain, while
pyramids form a buffer zone between the structured and unstructured portions of the mesh. The wing geometry is presented
in Fig. 16 along with the flow streamlines at the free end of the wing where a vortex is created.

In the following, the parallel feature detection technique of Section 4.1 is employed. At first, one level of refinement using
undivided differences of flow quantities with an alpha parameter a ¼ 0:5 is considered. The adapted mesh consists of
9,837,816 elements. In Fig. 17 the top of the wing is presented for a run with 8 processors. In column (a) it is observed that
refinement is concentrated at the front of the wing to capture the boundary layer. In column (b) the original and adjusted
signatures of partitions on the top of the wing are shown. As is evident, after load balancing the interpartition boundaries are
shifted towards the front of the wing where more elements are refined. It should be noted that, as expected, the total num-
bers of elements after refinement are the same regardless of the number of processors being used.

In Figs. 18 and 19 the execution times, against number of processors, for flagging of edges using Dijkstra’s algorithm and
mesh refinement, respectively, are presented. The speed-up curve for refinement is shown in Fig. 20 and is fairly good since
Fig. 15. Motion of a shock wave in a channel meshed with all four types of elements. The projection of the shock wave on the lateral boundary of the
channel is depicted. Adaptation steps 1, 4 (left column) and 7, 10 (right column) are shown.

Fig. 16. NACA 0012 wing geometry and flow streamlines close to the wing tip.

Fig. 17. Top view of the NACA 0012 wing: (a) the surface mesh before and after adaptation and (b) the corresponding partitions.

2 4 6 8 10 12 14 16
0

100

200

300

400

500

600

700

800

900

1000

Number of processors

Ti
m

e
fo

r f
la

gg
in

g
of

 e
dg

es
 (s

ec
)

Fig. 18. Total time required for flagging of edges using Dijkstra’s algorithm against number of processors. Case of subsonic flow around the NACA 0012 wing
with a ¼ 0:5.

2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

Number of processors

Ti
m

e
fo

r r
ef

in
em

en
t (

se
c)

Fig. 19. Time required for mesh refinement. Case of subsonic flow around the NACA 0012 wing with a ¼ 0:5.

C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473 3469

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of processors

R
ef

in
em

en
t s

pe
ed

−u
p

Ideal

Computed

Fig. 20. Parallel speed-up for mesh refinement against number of processors. Case of subsonic flow around the NACA 0012 wing with a ¼ 0:5.

3470 C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473
the partitioned mesh is balanced and no communication among processors is required during element division. In fact,
super-linear speed-up is observed for 4 and 8 processors and is attributed to Cache memory effects. A slight drop in
speed-up performance is observed for 16 processors and is due to the unbalanced distribution of edges flagged for refine-
ment. Here, speed-up is defined as the fraction of serial execution time over parallel execution time. In Fig. 21 the speed-
up for the combined edge flagging and refinement is presented. In this case, the speed-up is not close to the ideal. The rea-
soning for this phenomenon is that although the mesh is balanced, edges marked for refinement are not equidistributed
among processors. As a result, several processors remain almost idle during the edge flagging procedure and hence the
speed-up is low. Furthermore, and most importantly, the low speed-up is ascribed to the non-deterministic nature of the
serial adaptation algorithm. For instance, suppose that 4 processors are employed and that the serial algorithm requires 5
iterations to conformally flag the mesh edges. If the maximum number of iterations required by one of the processors is
10, then the speed-up is 2, instead of the ideal value of 4. Additionally, a processor may get activated more than once during
the execution of Dijkstra’s algorithm, hence the total number of iterations to achieve a hanging node free mesh is typically
much higher than that of the serial case. It would be perhaps more fair to examine speed-up using the execution time re-
quired for the 2-processor case as a reference time [21,51] (i.e. S ¼ T2

Tp
, where T2; Tp are the timings required for 2 and p

processors, respectively), however it was desired to demonstrate parallel performance compared to the serial case. In
Fig. 22 the execution times for feature detection and determination of neighbour processors are presented. It is observed that
the time for feature detection is almost constant with increasing number of processors. This is expected since most of the
0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

Number of processors

Pa
ra

lle
l s

pe
ed

−u
p

Computed

Ideal

Fig. 21. Parallel speed-up for flagging of edges and mesh refinement against number of processors. Case of subsonic flow around the NACA 0012 wing with
a ¼ 0:5.

0 2 4 6 8 10 12 14 16

5

10

15

20

25

Number of processors

Ex
ec

ut
io

n
tim

e
(s

ec
) Feature detection

Neighbor processors determination

Fig. 22. Execution times for feature detection and determination of face neighbours after load balancing for the NACA 0012 wing refinement case.

C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473 3471
computation in this case is executed by the master processor. Also, a small increase in execution time is observed for the
determination of processor adjacencies with 16 processors. This phenomenon is due to the communication overhead result-
ing from the exchange of interpartition boundaries among processors, since an all to all communication step is used. Com-
munication based on an optimal task scheduling should correct this scaling. However, it should be emphasized that the CPU
time required for both operations is a minimal fraction of the total adaptation time.
Fig. 23. Case of repeated coarsening of the NACA 0012 wing mesh with increasing values of the adaptation threshold coefficient. The adapted mesh after
one level of refinement with a ¼ 0:5 (a), and the coarsened meshes with a ¼ 0:7; 0:9;1:1. (b)–(d) are shown. The partitions on a plane cut along the wing are
also depicted.

3472 C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473
Finally, a coarsening test case for the NACA 0012 wing is considered. Having refined the mesh once, the value of the adap-
tation threshold coefficient a is progressively increased by a constant 0.2 and all edges with divided differences below
lþ ar are flagged for coarsening, while edges above this threshold value are kept intact. As expected, after a large number
of coarsening operations the original mesh will be obtained. Three coarsening steps for this case, with 16 processors, are con-
sidered. The total number of elements after the first refinement is 9,837,816, as in the previous case. The numbers of ele-
ments at each coarsening step are 3,640,571, 2,909,466 and 2,835,841 for a ¼ 0:7;0:9 and 1.1, respectively. As is evident,
the total number of elements decreases with increasing values of a. A field-cut at x ¼ 0:07 of the meshes resulting first from
refinement and then from successive coarsening is presented in Fig. 23. The various partitions are also delineated.
8. Summary

A parallel adaptive refinement/coarsening scheme for general three-dimensional hybrid meshes has been presented. It is
based on the serial adaptation scheme of [43,46], which was parallelized on a distributed memory architecture using MPI. An
attractive feature of the present work is the employment of a simple, general parallel data structure that can handle all four
kinds of elements; hexahedra, prisms, pyramids and tetrahedra. In particular, an inexpensive weighted graph, associated
with the coarse mesh, was used for partitioning and dynamic load balancing via the Zoltan library. Balancing applied to
the initial coarse mesh offered speed of execution, simplicity of implementation and, in many cases, simpler and smoother
interpartition boundaries. Communication for parallel exchange of edge refinement flags was based on interboundary faces
and a global to local node id conversion hash table.

Dijkstra’s distributed termination detection algorithm has been employed to implement the parallel version of the iter-
ative edge flagging procedure. Dijkstra’s algorithm respects the asynchronous nature of parallel edge flagging and results in a
faster adaptation algorithm, compared to other studies that enforce a synchronous approach. Several new algorithms have
also been introduced: (i) Parallel feature detection, that was based on an inexpensive use of a master processor, (ii) exchange
of portions of local meshes and modifications of the associated data structures during data migration, (iii) determination of
the processors’ interpartition boundary and (iv) identification of the new communication pattern after load balancing.

Test cases considered included global refinement of a hybrid mesh for a cylinder geometry, emulation of a moving shock
wave in channels meshed with tetrahedral and hybrid grids to demonstrate the coarsening capability of the present parallel
adaptation algorithm and subsonic flow around a NACA 0012 wing. For the latter case, the communication pattern determi-
nation is not scalable, however its scaling can certainly be improved by using a proper task scheduling technique. Parallel
feature detection is a fast process, albeit exhibiting a constant speed-up. Refinement speed-up was excellent, since no com-
munication was involved, and in some cases super-linear. Total speed-up was particularly low due to the non-deterministic
nature of the edge flagging algorithm and non-equidistribution of flagged edges.

To the best of our knowledge, this is one of the first works on parallel hierarchical refinement and coarsening of general
hybrid meshes. It would be desirable to derive load balancing strategies suitable for heterogeneous architectures or for sit-
uations where the number of available processors is varying during the simulation. Future work will also include coupling of
the present parallel adaptation method with various finite element and finite volume parallel CFD solvers.

References

[1] J. Waltz, Parallel adaptive refinement for unsteady flow calculations on 3D unstructured grids, International Journal for Numerical Methods in Fluids 46
(2004) 37–57.

[2] Y. Kallinderis, Hybrid grids and their applications, in: J.F. Thompson (Ed.), CRC Handbook of Grid Generation, CRC Press, Boca Raton, FL, 1999.
[3] Y. Kallinderis, A. Khawaja, H. McMorris, Hybrid prismatic/tetrahedral grid generation for viscous flows around complex geometries, Journal of the

American Institute of Aeronautics and Astronautics 34 (2) (1996) 291–298.
[4] A. Basermann, J. Clinckemaillie, T. Coupez, J. Fingberg, H. Digonnet, R. Ducloux, J. Gratien, U. Hartmann, G. Lonsdale, B. Maerten, D. Roose, C. Walshaw,

Dynamic load-balancing of finite element applications with the DRAMA library, Applied Mathematical Modelling 25 (2000) 83–98.
[5] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal 23 (1973) 298–305.
[6] A. Pothen, H. Simon, K. Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM Journal of Matrix Analysis 11 (1990) 430–452.
[7] N. Kruyt, A conjugate gradient method for the spectral partitioning of graphs, Parallel Computing 22 (1997) 1493–1502.
[8] G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular graphs, Journal of Parallel and Distributed Computing 48 (1998) 96–129.
[9] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM Journal on Scientific Computing 20 (1998) 359–

392.
[10] B. Hendrickson, R. Leland, A Multilevel Algorithm for Partitioning Graphs, Technical Report SAND 93-1301, Sandia National Labs, 1993.
[11] A. Vidwans, Y. Kallinderis, V. Venkatakrishnan, Parallel dynamic load-balancing algorithm for three-dimensional adaptive unstructured grids, Journal

of the American Institute of Aeronautics and Astronautics 32 (3) (1994) 497–505.
[12] Y. Kallinderis, Domain partitioning and load balancing for parallel computation, in: Computational Fluid Dynamics, Lecture Series 1996–2006, von

Karman Institute for Fluid Dynamics, Rhode Saint Genèse, Belgium, March, 1996.
[13] T. Minyard, Y. Kallinderis, Octree partitioning of hybrid grids for parallel adaptive viscous flow simulations, International Journal for Numerical

Methods in Fluids 26 (1998) 57–78.
[14] J. Flaherty, R. Loy, C. Özturan, M. Shephard, B. Szymanski, J. Teresco, L. Ziantz, Parallel structures and dynamic load balancing for adaptive finite

element computation, Applied Numerical Mathematics 26 (1998) 241–263.
[15] J. Flaherty, R. Loy, M. Shephard, B. Szymanski, J. Teresco, L. Ziantz, Adaptive local refinement with octree load balancing for the parallel solution of

three-dimensional conservation laws, Journal of Parallel and Distributed Computing 47 (1997) 139–152.
[16] E. Cuthill, J. McKee, Reducing the bandwidth of sparse symmetric matrices, in: Proceedings of the 24th ACM National Conference, 1969, pp. 157–172.
[17] A. Patra, J. Oden, Problem decomposition for adaptive hp finite element methods, Computing Systems in Engineering 6 (1995) 97–109.
[18] P. Campbell, K. Devine, J. Flaherty, L. Gervasio, J. Teresco, Dynamic Octree Load Balancing Using Space-filling Curves, Technical Report CS-03-01,

Department of Computer Science, Williams College, 2003.

C. Kavouklis, Y. Kallinderis / Journal of Computational Physics 229 (2010) 3454–3473 3473
[19] E. Boman, K. Devine, L.A. Fisk, R. Heaphy, B. Hendrickson, V. Leung, C. Vaughan, U. Catalyurek, D. Bozdag, W. Mitchell, Zoltan Home Page, 1999. <http://
www.cs.sandia.gov/Zoltan>.

[20] B. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs, The Bell System Technical Journal 29 (1970) 291–307.
[21] Y.M. Park, O.J. Kwon, A parallel unstructured dynamic mesh adaptation algorithm for 3D unsteady flows, International Journal for Numerical Methods

in Fluids 48 (2005) 671–690.
[22] J. Castanos, J. Savage, Parallel refinement of unstructured meshes, in: Proceedings of the IASTED International Conference on Parallel and Distributed

Computing and Systems, MIT Boston, USA, 1999.
[23] J.G. Castanos, J.E. Savage, The dynamic adaptation of parallel mesh-based computation, in: SIAM Seventh Symposium on Parallel and Scientific

Computation, 1997.
[24] T. Minyard, Y. Kallinderis, Parallel load balancing for dynamic execution environments, Computer Methods in Applied Mechanics and Engineering 189

(2000) 1295–1309.
[25] M. Shephard, J. Flaherty, C. Bottasso, H. de Cougny, C. Özturan, M. Simone, Parallel automatic adaptive analysis, Parallel Computing 23 (1997) 1327–

1347.
[26] L. Oliker, R. Biswas, Plum: parallel load balancing for adaptive unstructured meshes, Journal of Parallel and Distributed Computing 52 (1998) 150–177.
[27] L. Oliker, R. Biswas, H.N. Gabow, Parallel tetrahedral mesh adaptation with dynamic load balancing, Parallel Computing 26 (2000) 1583–1608.
[28] P. Selwood, M. Berzins, P. Dew, 3D parallel mesh adaptivity: data-structures and algorithms, in: Proceedings of SIAM Conference on Parallel Processing

for Scientific Computing, Minneapolis, USA, March, 1997.
[29] G. Karypis, V. Kumar, Parallel multilevel k-way partitioning scheme for irregular graphs, SIAM Review 41 (2) (1999) 278–300.
[30] K. Schloegel, G. Karypis, V. Kumar, A unified algorithm for load-balancing adaptive scientific simulations, Supercomputing, Dallas, Texas, 2000.
[31] Parmetis: Parallel Graph Partitioning and Fill-reducing Matrix Ordering. <http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview>.
[32] B. Hendrickson, K. Devine, Dynamic load balancing in computational mechanics, Computer Methods in Applied Mechanics and Engineering 184 (2000)

485–500.
[33] A. Vidwans, Y. Kallinderis, Unified parallel algorithm for grid adaptation on a multiple-instruction multiple-data architecture, Journal of the American

Institute of Aeronautics and Astronautics 32 (9) (1994) 1800–1807.
[34] J. Remacle, J.E. Flaherty, M.S. Shephard, Parallel algorithm oriented mesh database, Engineering with Computers 18 (2002) 274–284.
[35] J. Hallberg, A. Stagg, J. Schmidt, Adaptive tetrahedral grid refinement and coarsening in message-passing environments, US Army Engineer Research

and Development Center, Coastal and Hydraulics Laboratory Report. <http://chl.wes.army.mil/research/eqm/papers.htm>.
[36] H.D. Cougny, M. Shephard, Parallel refinement and coarsening of tetrahedral meshes, International Journal for Numerical Methods in Engineering 46

(1999) 1101–1125.
[37] Parmetis Manual. <http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/manual.pdf>.
[38] P. Cavallo, N. Sinha, G. Feldman, Parallel unstructured mesh adaptation for transient moving body and aeropropulsive applications, in: Proceedings of

the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 5–8 January, 2004.
[39] P.A. Cavallo, M.J. Grismer, Further extension and validation of a parallel unstructured mesh adaptation package, in: Proceedings of the 43rd AIAA

Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 10–13 January, 2005.
[40] C. Lepage, A. St-Cyr, W.G. Habashi, Parallel unstructured mesh adaptation on distributed-memory systems, in: Proceedings of the 34th AIAA Fluid

Dynamics Conference and Exhibit, Portland, Oregon, 28 June to 1 July, 2004.
[41] S. Blazy, O. Marquardt, Parallel refinement of tetrahedral meshes on distributed-memory machines, in: Proceedings of the 23rd IASTED International

Multi-Conference on Parallel and Distributed Computing and Networks, Innsbruck, Austria, February 15–17, 2005.
[42] Y. Kallinderis, P. Vijayan, Adaptive refinement-coarsening scheme for three-dimensional unstructured meshes, Journal of the American Institute of

Aeronautics and Astronautics 31 (1993) 1440–1446.
[43] Y. Kallinderis, C. Kavouklis, A dynamic adaptation scheme for general 3D hybrid meshes, Computer Methods in Applied Mechanics and Engineering

194 (2005) 5019–5050.
[44] E.W. Dijkstra, W. Feijen, A. van Gasteren, Derivation of a termination detection algorithm for distributed computations, Information Processing Letters

16 (1983) 217–219.
[45] E.W. Dijkstra, Shmuel Safra’s Version of Termination Detection, Technical Report EWD 998, Department of Computer Science, The University of Texas

at Austin, 1987.
[46] C. Kavouklis, Serial and Parallel Dynamic Adaptation of General Hybrid Meshes, Ph.D. Thesis, The University of Texas at Austin, August, 2008.
[47] Chaco: Software for Partitioning Graphs. <http://www.cs.sandia.gov/bahendr/chaco.html>.
[48] Y.G. Kallinderis, J.R. Baron, Adaptation methods for a new Navier–Stokes algorithm, Journal of the American Institute of Aeronautics and Astronautics

27 (1) (1989) 37–43.
[49] T. Baker, Mesh modification for solution adaptation and time evolving domains, in: Proceedings of the Seventh International Conference on Numerical

Grid Generation in Computational Field Simulations, Whistler, British Columbia, Canada, September 25–28, 2000.
[50] C. Özturan, Distributed Environment and Load Balancing for Adaptive Unstructured Meshes, Ph.D. Thesis, Rensselaer Polytechnic Institute, August,

1995.
[51] P. Cavallo, Automated Parallel Mesh Adaptation Methods for Transient Flow Field Analyses with Fixed or Moving Boundaries, Ph.D. Thesis, Drexel

University, May, 2006.

http://www.cs.sandia.gov/Zoltan
http://www.cs.sandia.gov/Zoltan
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://chl.wes.army.mil/research/eqm/papers.htm
http://glaros.dtc.umn.edu/gkhome/fetch/sw/parmetis/manual.pdf
http://www.cs.sandia.gov/bahendr/chaco.html

	Parallel adaptation of general three-dimensional hybrid meshes
	Introduction
	Partitioning of 3D meshes
	Dynamic load balancing on 3D meshes
	Parallel data structures
	Parallel refinement and coarsening

	The serial mesh adaptation method
	Element division types
	Element flagging rules
	Serial data structures

	Parallel data structures
	Data structure for the dual graph
	Data structure for the interpartition boundary
	Global to local id transform

	Parallel mesh adaptation
	Parallel flow feature detection
	The need for global termination detection
	Flagging of edges in parallel

	Dynamic load balancing
	Exchange of data and updates of the local data structures

	Interpartition boundary updates and related topological issues
	Phase 1: determination of interpartition faces
	Phase 2: determination of face neighbour processors (new communication pattern)

	Applications
	Global refinement of a cylinder hybrid mesh
	Refinement and coarsening for a moving shock
	Parallel adaptation for flow around a NACA 0012 wing

	Summary
	References

